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Nonstandard Model of the Expanding Universe 
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A reformulation of general relativity is proposed with the relativity principle 
being invalid. Consequently the space-time manifold carries a natural (1 +3)- 
foliation, where the foliation variables supersede the metric as the fundamental 
object. The Einstein equations become modified by some kind of foliation energy, 
but otherwise remain part of the dynamics. The theory is applied to a homogene- 
ous and isotropic universe; the generation of mass can be explained by conversion 
of foliation energy and inflation is driven by the negative foliation pressure. 

1. INTRODUCTION 

The notorious deficiencies of the standard cosmological model (i.e., 
horizon, flatness, smoothness, and singularity problems) have been given a 
very elegant solution through the notion of cosmic inflation (Turner, 1987; 
Blau and Guth, 1987; Linde, 1987). However, since this idea is still based 
upon the validity of the traditional Einstein equations, one has to introduce 
some physical system which is capable of developing negative pressure on a 
cosmic scale in order to blow up the universe. Such a peculiar system has 
been proposed as a weakly coupled scalar field subject to the well-known 
Higgs mechanism. Indeed, whenever the scalar field is in the "false vacuum," 
its energy-momentum content may be described by a "cosmological term" 
which is known to be responsible for cosmic inflation. Moreover, the energy 
released through the transition into the "right vacuum" is considered as the 
origin of the matter in the universe ("creation ex  nihilo").  

An appropriate scalar field of the desired kind seems to be provided by 
(at least some of) the grand unified theories, so that presently much attention 
is being given to those inflationary scenarios. However, it would seem desir- 
able to have more than one single mechanism supporting the phenomenon 

~11. lnstitut f/it theoretische Physik der Universit/it Stuttgart, D 7000 Stuttgart 80, Germany. 

1229 

0020-7748/92/0700-1229506.50/0 �9 1992 Plenum Publishing Corporation 



1230 Mattes and  S o r g  

of inflation. Even if the GUTs should turn out to be not viable, inflation 
will nevertheless continue to be a very attractive explanation for the observed 
evolution of the universe. Therefore an alternative foundation of the idea of 
inflation would be highly welcome. 

We shall present such an alternative by modifying somewhat the tradi- 
tional theory of relativity. This yields a potential competitor to the Higgs 
mechanism for curing some of the deficiencies of the standard model; in the 
present paper we restrict ourselves to a brief summary of the basic ideas 
together with a short demonstration of inflationary solutions. The essential 
point here is that it is gravitation itself which is able to produce the desired 
negative pressure, so that no extra physical system has to be introduced. The 
only thing that has to be added to the conventional Einstein theory is the 
assumption that the space-time manifold carries a natural foliation, where 
the foliation variables are to be considered as dynamical objects contributing 
to the energy-momentum content of the universe. 

2. FOLIATION DYNAMICS 

The starting point consists in the somewhat heretic postulate that the 
relativity principle is not valid on a cosmic scale, albeit it may be a good 
approximation for local physics. Consequently, the space-time manifold will 
carry a natural (1 +3)-foliation to be considered as the basic dynamical 
object of the theory in place of the metric G, which itself may be constructed 
afterward from the foliation variables. As the latter, we chose a tetrad field 
{e~} = {p; ~,-}, such that the three vectors ~ i  (=e,; i= 1, 2, 3) define a 3- 
distribution A and the remaining--characteristic vector" p (=e0) defines 
the complementary 1-distribution A of the (1 + 3)-foliation. Both distribu- 
tions are made orthogonal by defining the metric G as 

__ i G,v - ~ ,.~i~. + p, pv (2. I) 

This metric automatically orthonormalizes the tetrad vectors; addition- 
ally, it becomes covariantly constant 

VzG.v=0 (2.2) 

when the "foliation dynamics" is selected as 

V~pv = d4:iu~iv (2.3a) 

~ ,  ~i~ = -- JF,uP ~ (2.3b) 

Here, the coordinate covariant derivative V refers to the Levi-Civita connec- 
tion F of the metric G in (2.1) and ~ is the (gauge plus coordinate) covariant 
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derivative due to the 5a[0(3) projection .i of the 5~ 3)-valued gauge copy 
~0 of  F, i.e., 

~ ~3i~ = V, o@i~ + ei Jk,4ju ~k~ (A:= r162 (2.4) 

Obviously, there are two further dynamical objects besides the foliation 
variables {p, ~3i} entering the equation of motion (2.3a), (2.3b) : these are 
the 50/0(3) connection A= {,4i~} and the "Hubble (gauge) vector" dot ~= 
{ ~ , } ,  which parametrize the Lorentz connection r through 

= A . iU-  dttai li (2.5) 

where L; (l i) are the usual rotation (boost) generators of the local Lorentz 
group. Being proper dynamical objects of the theory, both variables A and 

are required to obey some equation of motion supplementing the foliation 
dynamics (2.3a), (2.3b). 

Before specifying this dynamical law, one introduces a further SO(3) 
gauge vector C=  {G~} leading to a modified 6e(.9(3) connection A, 

d,u = A,,  - G~, (2.6) 

and then one writes down a Yang-Mills-Higgs equation for the curvature 
F of A: 

@UF~u~ = 1  e, Jk(~Y)j~,)~k ~ (c =const) (2.7) 
s 

The motivation for such a procedure will become clear during the subsequent 
search for an equation of motion for the last dynamical variable ~ .  

The solution of this remaining dynamical problem offers itself by con- 
sidering the integrability conditions for the foliation dynamics (2.3a), (2.3b). 
Assuming that the coefficient objects A, ~vt ~ are already known, one can 
easily show that these equations of motion admit solutions {p(x), ~i(x)} 
only if the underlying space-time geometry has a curvature tensor R of the 
following form: 

R = + % ,  (2.8a) 
c~z 
R ~ ,  := eiJk~izffjo u Y)k,, (2.8b) 

R v,~ := H'~H, , ,~-  H;~,~Hvu +p,,(V,~HZt, - VuH;t,~) _pZ (V,~H,,~, - VuHv,~) 

(2.8c) 

Here, F is the curvature of the original connection A, 

P, u v -  O~,A~ - 0 u A,~ + ~/~.4juAk~ (2.9) 
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and H is the Hubble tensor associated to the vector ~ according to 

Hu,,:= &ii,~~ (2.10) 

Now, since the first-order derivatives of i~ and ~ enter the curvature R of 
(2.8a)-(2.8c), we obtain the desired equation of motion for these fields by 
postulating the Einstein field equations, reading in geometric units (Mattes 
and Sorg, 1989a) 

m 2 Eu~-8JrLr, Tuv (Lp is the Planck length) (2.11) 

Thus, the relevance of the Einstein equation persists in the theory as the 
dynamical equation for .~ and ,,~, but its dominant role is weakened some- 
what in favor of the foliation dynamics (2.3a), (2.3b), and (2.7). When the 
energy-momentum density T on the right-hand side of the Einstein equations 
(2.11) has been specified in terms of the space-time geometry, the system of 
equations (2.3a), (2.3b), (2.7), and (2.11) constitutes a complete and consist- 
ent dynamical theory of the foliated space-time manifold, which is considered 
as a viable alternative to the Einstein approach. 

3. FOLIATION ENERGY 

As far as the Einstein equations (2.11) are concerned, the present view- 
point mainly differs from the traditional approach with respect to the energy- 
momentum density T to be substituted on the right: assuming that the 
foliation fields {p, ~3i) are real physical fields ("ether fields"), one has to 
insert their energy-momentum density (e)T ("foliation energy") on an equal 
footing with the ordinary matter ((re)T), i.e., we put in (2.11) 

T,v= (e)T,v + (m)Tuv (3.1) 

By this assumption, the link between matter and geometry is even more 
intricate than in the traditional framework. 

The last task consists in specifying the foliation energy (C)T in terms of 
the ether fields. This is done by first deducing second-order wave equations 
from the first-order dynamics (2.3a) and (2.3b) and then equipping the 
ether fields with that energy-momentum density T which is provided by the 
canonical formalism for the solutions of those wave equations. The latter 
are found to be of the Klein-Gordon type, i.e., 

V'V, pv = - j/2pv (3.2a) 

@ ~  ~i~ = - ,/a' ~ ~J~ (3.2b) 
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Here the masses turn out to be space-time dependent via the SO(3) gauge 
vectors C and ,~r v, 

~ /2  := oVf. i~ argiu (3.3a) 
2 _  i , +  Jl~j - ~,~ ~ j  Ci~C/' - g u (  Ck~C k~) (3.3b) 

For the deduction of the Klein-Gordon equations (3.2a) and (3.2b) from 
the foliation dynamics (2.3a) and (2.3b) the Hubble vector 3r162 must have 
vanishing divergence: 

@~ ~ i  ~ = 0 (3.4) 

and further is required to be proportional to the gauge vector C: 

c,~ = ~'~;~ (3.5) 

Obeying a wave equation with causal propagation, any one of  the three 
fields p, ~,-, and A~ will contribute to the total foliation energy re)T: 

(e)T = (P)T + ta)T + tV)T (3.6) 

The ether part is specified here by the canonical formalism as 

1 i 
( P ) T  -4- (~) T - -  C , u C i v  (3.7) 

- u v  - -  ~ ~ v  2 n . c  2 

when the first-order dynamics (2.3a), (2.3b) is applied; furthermore, the 
gauge field contribution is, as usual, 

~V)Tuv= l_}_rr, i~ ~, 1~r ip~v ~ (3.8) 
4zr ~' ~ , , ~ v - ~ -  , iptr] 

NOW the interesting point here is that the ether contribution (3.7) 
becomes a pure stress tensor if the gauge vector C is chosen appropriately. 
For instance, the choices 

C;, - ~ -  ~b~'~ (3.9a) 

.~i~, ~ -  q~iu (3.9b) 

with 

~i~c~'r ~ i . c~b  = 0 (3.10) 
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yield a homogeneous and isotropic universe developing a negative ether 
pressure, i.e., 

{ (P)Tu ~ + (~)Tu ~) --* + ~-~22 P/, v (Nuv :=Gu~-pup~=N' ,N i~ )  (3.11) 
2n'c 

As mentioned above, this fact signals the occurrence of inflation within the 
present framework. 

4. EXPANDING UNIVERSE 

For a closer inspection of such a universe, one has to supplement the 
ether energy-momentum (3.11) by the gauge field part (V)T of (3.8). The 
latter energy-momentum tensor acquires the usual shape of an ideal gas of 
massless particles [SO(3) gauge bosons] 

2 2 

(F)Tu ~ _ f  • + f II (3p~,p~-- ~1~, ~) (4.1) 
87r 

when the following ansatz for the curvature F is used: 

jk (4.2) 

Here the scalars Jil, f• are coupled to the previous fields ~b, q~ of (3.9a) and 
(3.9b) via the SO(3) Bianchi identity 

@xFi, v + ~,Fivz  + NvFizu = 0 

This coupling is expressed as 

(4.3) 

cr ~b 2 (4.4a) A 

fz  = ~brp- q~ (4.4b) 

where the dot denotes differentiation with respect to universal time 0, i.e., 

q~:=O~b (4.5) 
00 

is the "radius" of the universe, and the foliation index o- specifies the type 
of subgeometry of the 3-dimensional "absolute space" 0 = const (o-= 0: flat, 
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cr = + 1" open, tr = - 1 : closed universe). Clearly, the line element of the 4- 
geometry is, as usual, 

( ~ ,  = const) (4.6) 

where ~ is related to the scalar ~0 of (3.9b) by 

~o = - - -  (4.7) 

and dl(,~) is the intrinsic line element of the absolute 3-space. 
Evidently, the homogeneous and isotropic universe may be effectively 

described by two parameters: the radius R and the scalar field 4'. Thus, the 
expansion dynamics of such a universe is specified by the equations of motion 
for these two variables, i.e., by the Yang-Mills-Higgs equations (2.7) and 
by the Einstein equation (2.11), where for the latter the energy-momentum 
density (m)T of ordinary matter is chosen to be due to a perfect fluid: 

(m) T= ~#Pu Pv - ~ 3  u (4.8) 

For the subsequent investigations of the expansion dynamics it is con, 
venient to rescale the relevant variables in the following way: 

Y~ 
r:-- , s :=~ ' .  4' 

Lp 

0 
t : = - - ,  m := L~,~tr (4.9) 

Lp 

b:= L4,~, A:= LP 

By these arrangements, the Yang-Mills-Higgs equation reads 

d ( r~)=2rs (A 2 a+s2 I dt ~5 -j (4.10) 

Further, the Einsteinian E may be deduced from the Riemannian R of 
(2.8a)-(2.8c) by use of the Hubble vector ~ of (3.9b) and the subcurvature 



1236 Mattes and Sorg 

F of (4.2) and then the Einstein equations (2.11) are found to be equivalent 
to the following system: 

2 2 

m + 3 m + b o  =3A2[s2"l= = / s  .'~ (4.11b) 
2 .  

(the dot here denotes differentiation with respect to rescaled time t). For an 
actual numerical integration of the dynamical system (4.10)-(4.11), the ini- 
tial value ml0 of the mass density m must be related to the other initial values 
rl0, sl0, ~1o, and ~Jo through the so-called "initial-value equation" 

2 2 

~2-~2=t r+(  ~ +8zr r2m (4.12) 
\ r /  3 

The present theory is reduced to the standard model for cr = 0 and s = 0. 
The empty universe ( m = b ~ 0 )  has already been considered for t r=0  in a 
preceding paper (Mattes and Sorg, 1989a). Here, the main result is that the 
present model admits a nontrivial vacuum geometry (de Sitter universe: q~= 
1/l, (o = 1/L;/,  L = const). It therefore provides us with a physical explana- 
tion of the so-called "cosmological term" which originally was introduced 
into the theory for purely formal reasons. Moreover, the expansion dynamics 
(4.10)-(4.12) admits two further solutions (tr =-4- 1) for the empty universe, 
where the expansion is continued forever in the open case (or=+ 1) and 
reverts to collapse in the closed case ( t r = - 1 )  after having reached the 
Planck radius ~m,x = 1 as the maximal extension occurring at Planck time 
tp= 1 (Mattes and Sorg, 1989b; Mattes, 1990). 

5. GENERATION OF MATTER 

In the standard matter-dominated model (b---0), the mass M of the 
universe (resp. the mass content of a comoving 3-cell), is defined through 

M(r) = r3m(r) (5.1) 

and is a constant (p, say), however small or large the universe may be. Thus, 
the traditional gravitation theory fails to give an explanation of the physical 
origin of the mass density (m) enclosed in the present-day universe. However, 
the present theory offers a potential source of mass M in the form of the 
foliation energy emerging through the splitting of the space-time manifold 
into 3-space and time. 
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Indeed, introducing the total energy T of (3.1) into the Einstein equa- 
tions (2.11) merely yields the conservation of the sum of foliation and matter 
energy, i.e., 

Vt~ ((e) T~  v + (m)T u v) = 0 (5.2) 

so that both kinds of energy may be converted into one another. This signals 
the possibility that the primordial universe began with no matter (M--0) 
and built up the present mass through the conversion of foliation energy, 
which was preexistent as early as the foliated space-time itself. This implies 
that the variable s started with nonzero value and dropped to zero during 
the early history of the universe so that the standard model ( s - 0 )  is a fairly 
good approximation today. 

The mass density generated by this process is found by integrating 
equation (4.11 b), which yields for zero pressure (b = 0) 

3A2( ;0 s2 )=:Mad+ Mna (5.3) M(r)  = p + ~ 3 d r -  rs 2 

Here, the integration constant p is identical to the adiabatic Mad part not 
subject to the energy-exchange process between matter and "ether;" this 
term gives rise to the well-known r -3 divergence of the density m for vanish- 
ing size of the universe (r ~ 0) : 

P mad=~ (5.4) 

Clearly, it is very tempting to let this term vanish (p ~ 0) so that the total 
mass M of (5.3) exclusively consists of its nonadiabatk part Mna, 

na 4n" "0  

which just represents the converted foliation energy. In this way, the universe 
starts with zero matter and zero radius, but the ultimate mass M at later 
times, when the field variable s has died out, is given through 

j0 9A 2 s 2 
M - M,a ~ --4-~- ~ dr (5.6) 

(see Figure 1). Of course the time scale for such "creation ex nihilo" is 
expected to be governed by the Planck time 0p (,,~10 -43 see), where the 
generation of matter has to be adequately described in terms of an appropri- 
ate quantum theory of the interaction of the ether fields p, .~ with the 
corresponding particle fields. However, even in the absence of such a detailed 
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Fig. 1. Conversion of foliation energy for a closed ( o - = - 1 ) ,  matter-dominated universe 
(b -=- 0), A = 1.5. For  the time-symmetric solutions of the equations of motion (4.10)-(4. ! 2) the 
total mass M(r) of (5.3) assumes its adiabatic value ~ for vanishing size r--* 0. The standard 
solutions (a), corresponding to the standard model (s-=-O), have constant mass throughout  
(M~-p) .  For  appropriate choice of the initial value Slo at maximal radius rm,x, the adiabatic 
part/1 vanishes: "creation ex nihilo" (c). In general, the mass M consists of both the adiabatic 
and nonadiabatic  parts (b). Negative values for ~ --- M(0) also occur (d) when sl0 is chosen too 
large. 

microscopic picture, some global properties of the early universe may 
approximately be accounted for by the classical description (Figure 2). 

6. INFLATION 

The reason the classical picture should not be too bad is due the very 
early decoupling of the gravitational interactions from the particle creation/ 
annihilation process occurring during the primordial quantum phase. There- 
fore the space-time geometry may be assumed to develop in a purely classical 
way even when the other interactions are still governed by their correspond- 
ing quantum dynamics. However, there is some problem because if one 
imagines the primordial universe being born by some quantum effect, the 
relevant physical scale should be set by the Planck mass Mp (~ 10 -5 g) or 
the Planck length Lp (~ 10 -33 cm). If these parameters are realistic measures 
also for the time of gravitational decoupling, there must have taken place 
some strange effect during the subsequent classical stage, which was able to 
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Fig. 2. Creation e x  nihilo. The closed universe (tr = - 1) starts with zero matter (/1 =0, Figure 
1) but rapidly attains its mass M by conversion of foliation energy. The mass M is then held 
constant during the "standard stage" beyond the Planck time, where s~0, and the standard 
model becomes a good approximation. Choice for the numerical integration: rmax = 5, :10 = 0, 
mlo =4.6 x 10 -3, sl0 = 3 x 10 -8, .~10 = 0 ~ lifetime 2T0~ 8. 

b low up  the universe and thereby equip it with the r ight  initial condi t ion for 
the simple expans ion  law predicted by s tandard  F R W  models .  

In order  to take account  o f  such a pecul iar  inflation, the current  scen- 
arios o f  cosmic evolut ion in t roduce an extra  physical  system, namely  a 
weakly  coupled scalar field which is subject to the Higgs mechanism.  H o w -  
ever, it seems to us m o r e  adequate  to consider inflation as being p roduced  
by  gravi ta t ion itself wi thout  reference to such an addit ional  physical  system 
(e.g., a ma t t e r  field to be equipped with all the necessary propert ies  for  
inflation in an artificial manner ) .  Indeed,  we are able to show that  our  
present  gravi ta t ion  theory  admits  solutions o f  inf lat ionary charac ter  in a 
very natura l  way;  one could even argue tha t  our  model  predicts inflation as 
the natura l  state o f  mo t ion  for  the universe. The  recollapsing solutions o f  
the type shown in Figure 2 then appea r  as in termediate  states ( " v a c u u m  
f luctuat ions")  o f  finite dura t ion  between two vacuum configurat ions,  the 
initial (final) one o f  which is a contract ing (expanding)  de Sitter state 
(Figure  3). 

As ment ioned  af ter  (4.12), the flat de Sitter universe ( t r = 0 )  is one o f  
the exact  vacuum solutions (m = b = 0) o f  the theory. But  also for  nonflat  
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Fig. 3. Matter-dominated universe as vacuum transition. Since the contracting de Sitter vac- 
uum (1>0) is unstable, the transition to the stable (expanding) phase (1<0) is possible only 
by intermediately passing through a ,'standard stage" with almost constant mass M (see Figure 
2). The mass density m has to become negative for a short time interval connecting the qualita- 
tively different phases. 

foliations (tr :/:0), both the contracting and expanding de Sitter geometries 
are approximate solutions so long as the field variable s is much larger 
than the foliation index (Isl >> Icrl). Clearly, this condition is satisfied almost 
trivially on account of the exponential growth (decay) of s. Moreover, it can 
easily be shown that the contracting de Sitter phase is unstable, whereas the 
expanding one is found to be stable (Mattes and Sorg, 1989b). Thus, one 
may consider the intermediate state of Figure 3, which is assumed to resem- 
ble very much our observable world, as an unavoidable stage of the evolution 
of the real universe, when it tries to leave its initial (but unstable) vacuum 
state in order to pass over to the stable vacuum phase. 
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